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Abstract 

A set of nonlinear partial differential equations covariant in a non-Euclidean space is 
reduced to the Dirac equation for the electron and the Maxwell-Lorentz equations of 
electromagnetic fields under certain assumptions. In the course of reduction, we have 
opportunities for understanding the relationship between the Dirac equation and the 
Maxwell-Lorentz equations, and also for visualizing conditions which limit feasible 
applications of  those known equations in physics. 

1. Introduction 

In a paper published earlier (Koga, 1975c), it is suggested that the electron 
is a localized and self-sustained field governed by a set of nonlinear partial 
differential equations covariant in a non-Euclidean sense, and that it is possible 
to reduce those fundamental equations, by linearization, to the Dirac equation 
for the electron and the Maxwell-Lorentz equations of electromagnetic fields, 
under two sets of restrictive conditions, respectively. The purpose of the 
present paper is to demonstrate the feasibility of the suggestion. For the time 
being, we do not intend to compare solutions of the fundamental equations 
directly with empirical information. Instead, we take the point of view that 
the feasibility of those equations is substantiated by the fact that they are 
reducible to the Dirac equation and the MaxweI1-Lorentz equations, of which 
physical implications are known. Therefore, we concern ourselves with the 
consistency and compatibility among those conditions under which the reduc- 
tions are carried out. We expect also that the present investigation will shed 
some light on those mazing difficulties which we encounter when we try to 
comprehend the behavior of the electron according to the Dirac equation and 
the MaxweU-Lorentz equations (Koga, 1975a, 1975b, and 1975c). 

First, in Section 2, we shall propose a set of equations as governing the 
field constituting an electron. In Section 3, we shall show that the original 
set of equations is reducible, under certain assumptions, to the Dirac equation 
for a free electron. In Section 4, the interaction between an electron and an 
© 1976 Plenum Publishing Corporation. No part of this publication may be reproduced, 
stored in a retrieval system, or transmitted, in any form or by any means, electronic, 
mechanical, photocopying, microfilming, recording, or otherwise, without written 
permission of the publisher. 

99 



100 TOYOKI KOGA 

external electromagnetic field, as represented in the Dirac equation, will be 
investigated. The derivation of the Maxwell-Lorentz equations will be treated 
in Section 5. Finally,  in Section 6, we shall examine the consistency and 
compatibi l i ty  among those assumptions and conditions under which the 
derivations are made. 

2. Fundamental Equations 
Following Einstein (Einstein, t919) ,  we assume that an electron consists of  

two parts: One part is a matter  field and the other a gravitation field. The two 
fields interact mutual ly  and make the electron localized and self-sustained. 1 

We write for the matter field 

1 a(x/~F ij) .. an _ 0 8x] - g,1 ~ - (2.1) 

1 a(X/Z-gF * ij) +gi] a~. = 0 (2.2) 

In the above, g is the determinant of  the metric tensor gij; F ij is an antisym- 
metric tensor and F *ij is conjugate to FiJ; ~ and r~ are scalars. 2 The equations 
are covariant in the Riemannian sense (M$11er, 1952, p. 283). Since we expect 
that those equations will be reduced to the Dirac equation, as represented in 
Appendix A, and also to the Maxwetl-Lorentz equations, we write for F ij 

Considering 

I 0 Qz-Qy -Op 1 -Qz 0 Qx -Py 
F*I = Qy -Qx 0 

ey t,z 

F*iJ = gikg#n F~m 
= gkgjm km tF 

where fikmst is the Levi-Civita symbol,  we have 

I_ 0 -Pz Py QQ~zo 1 e~ 0 - Ix  

-ey o 

Qx -Qy -az 

(2.3) 

(2.4) 

1 Generally speaking, this idea was proposed by Einstein. However, perhaps due to his 
esteem of Ernst Mach, Einstein did not necessarily seem to think that the field can be 
completely self-sustained. This matter has been discussed by some authors. See essays 
by O. Klein (1971) and H. Margenau (Schilpp, 1949, p. 243). 

2 Most of the mathematical symbols appearing in this paper are, unless otherwise specified, 
similar to those in (M~ller, 1952). 
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We note that 

I 0 

F * q P'z, 
= _p~, 

Q'~ 

-Pz Fy - Q x \  
0 -Px -Q~,]  

o 
Q;, Q; 

(2.5) 

P 4 = P', Q 4= Q' (2.6) 

in general) 
In order to see what is necessary for reducing equations (2.1) and (2.2), we 

rewrite them in terms of P, Q, P', and Q' given by (2.3) and (2.5): 

curlQ O(ct) gradr~+~--~ (gradx/Z-})xQ- 3(ct) ] + H = 0  (2.7) 

2"q + 1 div P + O(et) ~-g (gradVr~)" P + Ht = 0 (2.8) 

aQ' 1 [ P'+O~/'L-g ] + ~ = 0  (2.9) curl P' + 3(et) - grad ~ + ~ (grad ~/-L-~) x O(ct) Q' 

where 

div Q' - 0,',} 1 Q, 3(ct) + ~ (grad ~/'g) • + Et = 0 

(x, y, Z, ct) = (X 1 , X 2 , X 3 , X 4)  

(2.10) 

H = (Fix, Hy, Hz) 

and 

L_gl4 ] 
0 _ (g22 a 0 24 0 ] 

HY= -g21~x - 1 ) ~ y - g 2 3 ~ z - g  ~ j ~  (2.11) 

Hz = _ g 3 1 ~ _ g 3 2  0 (g33_1) ~ - g 3 4  O 1 
J 

• ] 
Ht = --g41 ~X x ~yy ~ZZ + 

3 
We shall often write P for (Px, Py, Pz) and Q for (Qx, Qy, Qz) simply for the sake of  con- 
venience. But they axe not three-vectors. 
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= - H  where 77 is replaced with - ~  (2.12) 

Et = Ht where ~ is replaced with - ~  

By comparing equations (2.7)-(2.10) with equations (A5)-(A8) derived from 
the Dirac equation in Appendix A, we see easily that those two sets of  equa- 
tions are much similar, if we write 

P = P', Q = Q' (2.13)  

We expect that the equivalency between the two sets of  equations, to a good 
approximation, will be seen, if we have a proper set of conditions as regards 
the metric tensor. With this expectation, we wish to consider the well-known 
Einstein equation for the curvature tensor: 

R i j  - ½gijR = --  ~Ti j  (2.14) 

where R i j  is the contracted curvature tensor, R is the curvature scalar, and Tij 
is the energy-momentum tensor of  the matter field. Einstein gave this equation 
by considering that the only fundamental tensors that do not contain deriva- 
tives of  gij beyond the second order are functions of  gij and the Riemann- 
Christoffel curvature tensor, and that the equation is analogous to the Poisson 
equation for the gravitation field o f  the nonrelativistic limit (Schilpp, t949, 
p. 73; Eddington, 1924, p. 79). However, we see two great difficulties in 
relying on equation (2.14). In the first place, we do not  know exactly what 
Tij is if it is assumed to be a function of  variables o f  the matter field. 4 Secondly, 
it is an extremely difficult task to treat ten simultaneous partial differential 
equations of  the second order. Our present purpose is to show that the Dirac 
equation and the Maxwell-Lorentz equations, which ar~ covariant only in the 
Euclidean sense, are both attainable by linearization of  the same one set of  
nonlinear equations covariant in a non-Euclidean sense. In view of  this, we 
consider that it may not be necessary for the covariancy of  the original equa- 
tions to be so general as to be Riemannian. 5 

In general, if the linearization is made by replacing a scalar function with a 
scalar constant, a vector that is a function with a vector that is a constant, and 
so on, the covariancy of  the resultant equations is the same as that of  the 
original equations. Furthermore, the same linearization may be made in any 
coordinate system. In view of the fact that neither the Dirac equation nor the 
Maxwetl-Lorentz equations are covariant in any non-Euclidean sense, we can 
infer that the linearization in question by which those equations are obtained 
is to be made by substituting constants, such as the rest mass and the charge 

4 Authors often place emphasis on Hamilton's principle of variation of deriving covariant 
equations from a Lagrangian function. But the choice of the Lagrangian function is 
rather arbitrary, and so are variation methods. There is no assurance of uniqueness of 
the result. As Eddington remarked earlier (1924, p. 139), the physical significance of 
the methods is unknown and doubtful, particularly when we have no means of evalu- 
ating those resultant equations directly in comparison with empirical information. 

s Because of the restrictive condition, viz., equation (2.14), Einstein's geometry is less 
general than that of Riemann (Eddington, 1924, p. 82). 



A RELATIVISTIC FIELD THEORY OF THE ELECTRON 103 

of the electron, for functions that  are not  scalars in the original equations 
considered in particular coordinate systems. Hence, it  is essential, prior to 
linearization, to make feasible assumptions with respect to the characteristics 
of  the fields and also to choose proper coordinate systems in which the process 
of linearization is carried out.  We consider the following two assumptions: 

I. Assumption as Regards the Gravitation Field. We assume that  the field 
in question is spatially localized. In the space outside the field, the Riemann-  
Christoffel tensor is negligibly small. 6 Hence, it  is convenient to take a Cartesian 
coordinate system and represent the metric tensor by  

l°°t gq= 1 0 

0 1 

0 0 - 

(2.1 s) 

so that  the metric tensor is given by  

i i00 gij = g22 0 

0 g33 g3 

0 g34 g44/ 

(2.16) 

6 It would be more reasonable to regard a part of the space as outside when the Riemann- 
Christoffel tensor is negligibly small in that part. Also we note that, owing to the other 
bodies of matter contained in the universe, the tensor in question does not completely 
vanish at any point of the space. But our interest is in the local field, i.e., the electron. 
Hence, we ignore the curvature of the global scale, and consider an inertial frame of 
reference. 

7 It is difficult to bring in any measuring rod and clock within the electron. Hence the 
procedure in question is merely mathematical rather than operational. This matter will 
be discussed again in Section 6. 

8 This is due to the fact that a four-dimensional continuum obeying Riemannian geo- 
metry can be represented graphicaUy as a surface of four dimensions drawn in an 
Euclidean hyperspace of ten dimensions (Eddington, 1924, Section 65). 

The ten components  of the metric tensor that is symmetric are functions of  
the coordinates when the coordinates are extended within the field of  the elec- 
tron. 7 The ten functions are dependent  not  only on the manner of  extending 
the coordinates within the field but  also on the characteristics of  the gravita- 
tion field that is induced by  the mat ter  field. F rom the mathematical  point  of  
view, in general, it  is possible to choose a coordinate system in which four, at 
most,  of  the ten components  of  the metric tensor are specified. 8 Besides, 
owing to particular characteristics o f  the matter  field, the gravitation field 
must also be particular.  Indeed, we, being posit ioned outside the field, notice 
not  only that the field is localized in space, but  also that there is a certain 
anisotropy of  the field as related to the spin o f  the electron. We have chosen 
the coordinates outside the field so that the metric tensor is given by (2.15). 
We now assume that  i t  is possible to  extend the coordinates within the field 
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to a good approximation. This assumption implies that the directional peculiarity 
of  the field arises always along the extension o f the third coordinate. An observer 
may happen to see that the third coordinate is particular with respect to an 
electron at a moment of time. But it is natural for the observer to expect that 
such a direction may change as time passes. The change may occur as a causal 
event. Nevertheless, we assume that the same direction continues to be parti- 
cular steadfastly. Indeed, we shall see later on that this condition given rather 
artificially is related to a particular specification of  the spin matrices contained 
in the Dirac equation, viz., specifying the z component to be diagonal. This 
obvious correlation supports our previous observation that the Dirac equation 
has no agency of  governing or motivating the temporal change o f  the aniso- 
tropic structure of  the wave function that satisfies the Dirac equation (Koga, 
1975a). Furthermore, according to another investigation made elsewhere (Koga, 
1975c), the z direction seems to be the direction of  the spin magnetic moment. 
If  we assume that the difference between the metric tensor given by (2.16) and 
the one given by (2.15) is small, so that 

g l l - -  g22-- g33-- - g 4 4 ~  1 

1g34 1 ( t 
then we have 

1 g 2 2 -  - 1 g33.-- 1 g 4 4 -  l g l l -  
gl  1' g22' g33 g44 

(2.17) 

(2.18) 

9 One might ask whether 
atgij(FJk _ gjk•) 8~/~x k 

is equivalent, for our present purpose, to the first term in the right-hand side of 
equation (2A 9). The answer is negative. This situation seems to be due to the fact 
that equations (A10)-(A13) are not symmetric with respect to P and Q. Also see Appendix C. 

g34~ --g34 g12=g13=g14=g23=g24=O 
g33g44 ~ 

according to 

= A iqg 

where A ij is the conjugate minor of  the component gi/in the determinant of  
the tensor. 

2. The Equation for the Gravitation Field. According to the above 
observation, we see that equation (2.14)is overly general for the present pur- 
pose of  linearizing equations (2.7)-(2.10). Instead, we assume a set of  equa- 
tions for the gravitation field that does not contain derivatives of gi/ beyond 
the first order: 

= ~r/ 
1 a ~ - g  agijrF.Jk_a, i k~__+bgi j rFik_ , : , i k l l )A  6" ~ x k  ~ ~" (2.19) 

axi 

where Ak represents an external electromagnetic field of a macroscopic scale, 
and a and b are scalars. 9 As is welt known, 
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1 OX/27g -= 2P~/ (2.20~ 
3x i 

is not a vector in the Riemannian space. It is a vector if the coordinate trans- 
formation coefficient c~ and the inverse transformation coefficient ~/sat isfy 

°~f i O~k]/~X 'i = 0 (2.21) 

(M~ller, 1952, pp. 273,278.) This relation is equivalent to 

3~i/3xi  = 0 (2.21') 

and these transformations constitute a group (see Appendix B). Thus we have 
a geometry which is less general than Riemannian geometry, and is much more 
general than Euclidean geometry; note that 

a~k i /3xJ -¢ 0 

in the former, while 

O~ki/Ox f = 0 (2.22) 

in the latter. Obviously, the number of equations (2.21') is four, while the 
number of equations (2.22) is 64. If we wish to have an approximate set of 
equations for a gravitational field that do not contain derivatives of  the metric 
tensor beyond the first order, we have to be satisfied with those conditions 
proposed in the above. 

To sum up, we assume that equation (2.19), accompanied with conditions 
(2.16) and (2.17), is able to determine the field of the electron sufficiently 
precisely. 

The second term in the right-hand side of equation (2.19) gives the effect 
of an external electromagnetic field which may be represented by 

At, = (A, -q~) (2.23) 

where A is the vector potential and ~b is the scalar potential. 
We expect that the first term in the right-hand side of equation (2.19) is 

responsible for the rest mass of the electron when equation (2.19) is sub- 
stituted in equations (2.7)-(2.10). Here we note that the role of 3~/Ox k is 
similar to that of Ak in the same equation. If we imagine that Ak is exerted 
by the electron itself, the dominant component would be the fourth one. 1° 
Considering this, we assume that the fourth component of 3rl/3x k is dominant 
in comparison with the other three components. For treating nonlinear terms 
in equations (2.7)-(2.10) for the purpose of tinearization, we assume that 

3~/~X i ~ (0, 0, 0, O~/(}X 4) (2.24) 

lo The electron has no velocity relative to itself. This analogy is feasible only in a sense 
of approximation, for the electron has a spatial extension. 
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Similarly, we assume that 

O~/ax i - (0, 0, 0, a~/bx 4) (2.25) 

According to those conditions considered above, we have for the H's given by 
(2.11) 

H~ = Hy = 0, Hz = _g34 arl/a(ct) (2.26) 

Ht = _(g44 + 1)an/a(ct) 

and for the 2's given by (2.12) 

~x = ~y  = 0, ~z = g34 O~/a(Ct) (2.27)  

~,t = (g44 + 1)a~/a(ct) 

Also we assume that gij given by (2.t6) is sufficiently close to gij given by 
(2.15) that condition (2.I 3) 

P = P', Q = Q' (2.28) 

is justified to within the given approximation. Indeed, without this condition, 
equations (2.9) and (2.10) would be much remote from Eqs. (A7) and (A8) 
given in Appendix A. 

For deriving the Dirac equation in Sections 3 and 4, and also for deriving 
the Maxwell-Lorentz equations in Sections 5, from equations (2.7)-(2.10) 
and (2.19), we have to assume further a few conditions. But there is no directly 
empirical means which provides information serving as justification for those 
conditions. The justificat!on may be found in the following two facts: The first 
is that the treatment leads to the Dirac equation and the Maxwell-Lorentz equa- 
tions, which are known to provide information of natural phenomena; and 
the second is that those conditions assumed case by case, each somehow in 
an ad hoc manner, are mutually compatible. We shall discuss this matter in a 
retrospective way again in Section 6. 

3. The Dirac Equation for a Free Electron 

It is possible to derive the Dirac equation for the electron from equations 
(2.7)-(2.10) and (2.19), by substituting 

2mc/h 

for 

g3a at/ g34 a~ 
and (3.1) 

a(ct) ~ a(ct) 

in nonlinear terms. In this section, we assume that there is no external field: 

Ak =0  

in (2.19). The effect of Ak will be investigated in the next section. 
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On substituting (2.18), (2.24), and (2.25) in (2.19), we have 

g radx /~_  
-aQ 3(cr/t) (3.2) 

1 3X/Z'g_ at 3r/ (3.3) 
X/-L--g 3(ct) 3(ct) 

In order to make equation (2.7) equivalent to equation (A5), with f0) being 
omitted, it is necessary that 

(1/X/-~) {(gradx/'~) x Q - [3x/Cg/3(ct)]P) +H= 0 (3.4) 
By substituting (3.2) and (2.26) in (3.4), we obtain 

where 

P = (g34/a~)I (3.5) 

I = (0, 0, 1) (3.6) 

is defined in order to simplify the presentation, and may be treated as if it were 
a three-vector. On substituting (3.2), (3.3), and (3.5) in the nonlinear terms in 
(2.8), and considering (3.1), we have 

gradx/r~ g34 3/'/ [ g44 + 1 
x / ~  "P+Ht= ~ 3(cO I I ' Q + ~ )  

- 2 m c (  +g44+1 ) g ~  
• Q - - -~ - -  ~ (3.7) 

Hence, if we assume that 

[(g 44 + 1)/g 34 [ (3.8) 

is negligibly small as of higher order, equation (2.8) is equivalent to equation 
(A6) with f(2) being omitted. 

In equation (2.9), the nonlinear terms are treated by considering (2.27), 
(2.28), (3.2), (3.3), (3.5), and finally (3.1), as follows: 

(gradx/'L-g) x 3(ct) Q + 2 

g34 3~/ 

3(ct) 
3~/ ~Q_g34 3f I - -  Q x I - a ~ 3(ct) 

2mc(i a~2 ) 
= h x Q -~--~ Q + r/I (3.9) 
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If the second term in the result is negligible as of higher order, equation (2.9) 
is equivalent to (A7) with f(3) being omitted. Postponing this exposition for a 
while, we treat the nonlinear terms in equation (2.10) as follows: 

a~ 
grad~/Zg a~ Q2 1) ~(ct) • Q+~t = - a ~  +(g44+ 

2.mc -a t  02 g44 + 1 7) 
(3.10) 

/ 

The last term in the above is immediately negligible according to the assumption 
made for (3.8). In order to evaluate the nonlinear terms left in (3.9) and (3.10), 
we consider the following: 

The spin matrix component in the z direction is given as diagonal in Ap- 
pendix A. According to an earlier investigation (Koga, 1975c), we have an 
expectation that Q, representing the magnetic field, is almost in the z direction, 
i.e., (grad x / ~ ) x  = (grad vC-g)y = 0, according to (3.2). Hence, considering 
(3.5), we assume that 

Q = - # P  (3.11) 

We shall see that this assumption is consistently necessary also in Sections 4 
and 5. Substituting Q from (3.2) and P from (3.5) in (3.11), we have 

(3.12) 
# = ~/--gga4a~?/a(et) = 2mevCg az 

In Section 5, we shall see that P represents the electric field in a certain way, 
and Q the magnetic field. Considering that the magnetic field is not so signi- 
ficant as the electric field when they are induced by an electron at rest, we 
assume that 

t ~ l <  1 (3.t3) 

By substituting P given by (3.5) in (3.11), we have 

I/~l = Iaz/Pz I = [a~a/g 34 I ' (  1 (3.14) 

Accordingly, those nonlinear terms left in (3.9) and (3.10) should be neglected. 
In this way, it has been shown that equations (2.9) and (2.10) are equivalent 
to equations (A7) and (A8), respectively, if f(3) and f(4) are omitted from the 
latter two. In the next section, we shall show that the second term in the right- 
hand side of equation (2.19) is responsible for the f ' s  that have been omitted 
thus far in equations (A5)-(A8). 

4. The Dirac Equation for an Electron in an 
External Electromagnetic FieM 

Those terms which represent the effect of an external electromagnetic field 
on an electron in the Dirac equation yield the f ' s  in equations (A5)-(A8) ob- 
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tained in Appendix A; the f ' s  are given by (A10)-(A13). In this section, we 
shall show that those additional terms arise from the second term in the right- 
hand side of equation (2.19), when (_g)-l/2 3 x/-L--g/3x i from (2.19) is substituted 
in equations (2.1) and (2.2). Once the substitution has been completed, those 
additional terms are treated on the assumption that the metric tensor is to be 
given by (2.15). (This seems to imply that the interaction is considered only 
near the outer edge of the electron field.) 

According to (2.3), we write 

( F  jk - gJk71)A k = (S, St)  (4.1) 

where 

S = A x Q -  r /A-  A4P 

St = A" P + ~/A 4 (4.2) 

A = ( A x , A y , A z )  - ( A 1 , A 2 , A 3 )  

Considering (2.5) and (2.15), we have similarly 

(F *jk +gJk~)A k = (T, I t )  (4.3) 

where 

T = - A  x P + ~A - A 4 Q  (4.4) 

Tt = A "Q - ~A 4 

As is shown in Appendix D, relation (3.11) 

Q = -uP,  [Ui<  1 (3.11) 

leads to 

S = ~T (4.5) 

S t  = laTt 

to the approximation of ignoring/~2. According to (3.1 1) and (4.5), we get 

S x P = - T x Q  

S - P  = - T -  Q (4.6) 

S t P =  - T t Q  

By considering (3.5) and (3.11), we have 

Q = (/4934/a~)I (4.7) 

= ( e / b ~ c ) I  

where e is defined by 

e = - b u ~ e g 3 4 / ( a ~ )  

and b appears in equation (2.19). 

(4.8) 
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We are ready to calculate the f ' s .  We write 

( 1 / X / ' ~ ) O X / ~ / ~ x i ) F  ki = (f(1), f(2)) 

and substitute 

( l / x / ~ ) ( a v % / a x  9 = bg~j(F/k - gjk,7) & 

according to (2.19). Then, considering (4.1), (4.6), (4.7), and (4.2), we have 

f(1) = b(S × Q +StP)  

= b(S x Q - TtQ) 

= b(A x Q - r?A - A4P ) x Q - b(A .Q - ~A4) Q 

= (e/hc)(A x Q - 71A + qSP) x I - (A" Q + qs~)I (4.9) 

where A 4 = -q5 has been considered. Similarly 

f(z) = bS.  P 

= - b T "  Q 

= b ( A  x P - ~A + A tQ)" Q 

= (e/hc)(A x P - ~A - CQ)- I  (4.10) 

Repeating a similar treatment,  we obtain f(3) and f(4), appearing in (A7) and 
(AS), f rom 

1 aX/'Z-gF, ik 

in equation (2.2): 

f(3) = - b ( - S  x P + StQ) 

= ( e / ~ c ) ( A x P - ~ A - c ~ Q ) x I - ( A . P -  ~7~)I (4.11) 

]<4) = b(S. Q) 

= (efflc)(A x Q - r/A + qbP)- I (4.1 2) 

We note that the sign of f(3) has been adjusted so as to be consistent with 
equation (2.9), which is given as corresponding to equation (2.2) where the 
sign of  the left-hand side has been changed. 

We note that the f ' s  obtained in the above are exactly the same as those 
given by (A1 0)-(A1 3). 

5. The Maxwell-Lorentz Equations 

According to Lorentz, a superposition of  the fields of  many electrons, being 
smeared out in average, is observed as an electromagnetic field governed by the 
Maxwell-Lorentz equations. In this section, we shall demonstrate that the 
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Maxwell-Lorentz equations are derivable from equations (2.1), (2.2), and 
(2.19) assigned to each of many electrons distributed in a space domain. It 
should be noted that a few assumptions necessary for this derivation have 
already been given for deriving the Dirac equation in previous sections. 

The N electrons under investigation are numbered with v: 

v=  1,2, 3 , . . . , N  

The field of electron v is represented by 

Fik(v) ~: Elk(X, p), etc. (5;1) 

where X represents independent coordinate variables (x 1, x 2 ' x a, x4). Since 
there are N electrons, we have to consider that each electron is submerged in 
the gravitational field of which the metric tensor is affected by the N electrons. 
The covariant components of the metric tensor are denoted by ~ik. We write 
equations (2.1) and (2.2) for each electron: 

1 ~ ~k a,(v) 0 
, / ~  ~x k ( v ~ k ( ~ ) )  - ax~ .... (5.2) 

1 a (x/Z-~F,ie(v))+~ O~(v) = 0 
~)x k Ox k (5.3) 

In place of equation (2.19), we have t i 

1 ~x/-@ 
a~k] ~ [F*Jm(v) - g jm~(v ) ] -~  (5.4) 

~Jx k v 

In order to simplify the treatment, we first assume that there is no significant 
relative velocity among the electrons so that we may choose coordinate systems 
in which, as assumed by (2.24), 

~r~(v)/~x k = (o, O, o, arT/~x 4) (5.5) 

~(v)/~x~ = (0, 0, 0, ~ / a x  4) 

are valid for all the electrons. (It would be possible to eliminate this assumption, 
if we intend to tolerate the complicacy of taking a kinetic-theoretical approach.) 
In addition, for the time being, we assume that those electrons are at rest with 
respect to the coordinate system. But their spins are directed to various direc- 
tions at random. Hence, bilinear products of variables with no correlation 
such as 

Px(v)~(u), Py(v)Qz(u), Qx(v)Qy(v), 

Qx(v)Px(u'), Qx(v)Qx(v'), etc., u 4= v' (5.6) 

11 We assume that the interaction between a pair of electrons does not significantly contribute 
to ~. 
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are assumed to vanish in nonlinear terms, when they are summed up with 
respect to v and v'. On consideration of (5.5), we rewrite (5.4) and obtain 

an(v) 
~ _ ~ g r a d x / - ~ = - a  ,S Q(v) a(c--~ 

1 aX/~  ar/(v) 
v'~ a(ct~ = - a  E ~(v) a(ct) 

(5.7)  

Utilizing these, we have for a part of  the nonlinear terms of  (5.2) 

1 ovr@N~,Flk(v)=  1 OX/~w- ,  , 1 BX/-L~ 
X/2-~ ax k ~ v ~  ax - ax 3 

Qy(v) 

1 a,vC-~ e~(~,) 
-- ~ aX 4 

~" "v" "v'" arl(v') + 

17 

an(v') an(v') 
x -a E E ~ ( v ) ~ ( v ' ) -  a(et) a(et) 

= o i f . s )  

We have taken into account that variables given by (5.6) vanish when they are 
averaged over v and v'. Similarly 

(1/X/-~")(BX/'-~Ibx k) ~ Fik(u) = 0, i=  2, 3 (5.8') 

On the other hand, by considering (3.5) and (3.1), we have 

1 a ~ r L ~  ---, 4k - - a  E ~-,Or/(v') . . . .  V ~  ~x k 2~F (v)= ~___~-~ll(v).P(v) 

an(~) 
= -a~..~ a(ct)  Q(v)- P(v) 

= E  Brl(v)B(ct) g34(S"~ v) I(v)" Q(v) 

2me 
- -~ 2. Qs(v) (5.9) 

In the above treatment, we have considered that ~ZQ(v')  • P(v) = O, if v 4: v', 
and those of  which v = v', do not vanish; also noted is that g34(X', v) implies 
that each electron is given its own spatial coordinate system such that the third 
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coordinate axis is in the direction of its spin, i.e., of Q(u). 12 Hence Qs(u) is the 
component of Q0') in the direction of spin, and is the magnitude of Q(u). We 
note that I(v) is a unit vector oriented to the direction of spin, according to 
(3.6). 

We define the number density of electrons by 13 

n = ~ Qs(u)/Sf f Qs(v) dx dy dz (5.10) 

According to the empirical information of the Bohr magneton, we put 14 
h 

f y f Qs(u) dx dy dz = 2me e (5.11) 

Hence 

or  
n = (2mc/eh) ~ Qs(u) 

Qs(v) = neh/(2mc) (5.12) 

On substituting (5.12), we have for (5.9) 

(1/wlZ~) (3 X/-~/Oxk) ~, F4k (u) = - ne  (5.13) 

Similarly, the first term of (5.3) is evaluated: 

1 
3 X ' ~ ' ~ F * i k ( u ) = O ,  i= 1 ,2 ,3  (5.14) 

1 3 ~ F , 4 k ( v ) : # n e ~ . O  (5.15) 
o x  

where/l has been given by (3.13), and #ne is to be ignored in comparison with 
ne in (5.13). 

The other terms in equations (5.2) and (5.3) are rather easily evaluated. 
We have assumed that the electrons are at rest, and hence the average field 
should be stationary: 

~. OFi4/Ox 4 = ~ Of*/ l i4/~x 4 = 0 (5.16) 

Further, considering (5.5) and that the spins are directed at random among 
those electrons, we have 

Y ~ o~/ax k = 7. ~ ~/Oxk = 0 ( 5 . 1 7 )  

12 It is possible to do so, since Q - P is a scalar. 
13 We suppose tha t  Qs(u) is un i form inside a space domain  and vanishes outs ide the  

domain .  Then  the volume of the  domain ,  V, is given by  

V = f l y  Qs(v) dx dy dz/QsO') 
14 Earlier we defined the  same e by (4.7). In fact ,  however,  what  is defined by (4.7) is 

e/b. Comparing (4.7) with (5.11), we obtain for b 

b = 2mV~  2 
where V is defined in the  previous footnote .  
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Summarizing the above, and considering (2.3) and (2.5), we have for (5.2) 
and (5.3) 

curl I) o = 0, div Po = ne 
(5.18) 

curtPo =0,  divQo =0  

where 

P0 = E P(v), Qo =•Q(u) (5.19) 

Of course, those conditions, such as (3.5), (3.11), etc., which are feasible for 
evaluating non-linear terms to an approximation, should not be applied to 
those variables contained in (5.18) and (5.19). 

Thus far, the electrons have been considered to be at rest to the coordinate 
system, and equations (5.18) are the Maxwell-Lorentz equations in the 
system. They are no longer covariant under the transformation defined by 
(2.21). We consider a new coordinate system moving with velocity - U  relative 
to the initial one. We note that dx dy dx d(ct) is a pseudoinvariant in the 
Euclidean space (Eddington, 1924, Section 49). Hence, n defined by (5.10) 
is the fourth component of a four-vector, and we have, with respect to the new 
coordinate system, 

p = ne/(1 - U2/c2) 1/2, J = pU (5.20) 

(M$11er, 1952, p. t97). These represent the charge and current densities, 
respectively. Thus, equations (5.18) yield 

c u r l  - = JIc  

div P = p (5.21) 

curl P + OQ/O(ct) = 0 

div 0 = 0 

due to the Lorentz transformation. We may substitute E for P, and tt  for (~. 

6. Summary and Retrospective Remarks 

The fundamental equations given by (2.1), (2.2), and (2.19) are covariant 
in coordinate systems in a non-Euclidean space defined by (2.21). The lineariza- 
tion of the fundamental equations, leading to the Dirac equation and/or the 
Maxwell-Lorentz equations, is carried out by substituting constants that are 
scalars, such as m/h and e/h, in place of functions that are not scalars. There- 
fore, the resultant equations are no longer covariant under the transformation 
defined by (2.21). Also the characteristics of the electron field which are em- 
bodied in the fundamental equations are partly truncated when they are trans- 
ferred to the resultant equations, viz., the Dirac equation and/or the Maxwell- 
Lorentz equations. 
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There are three main assumptions that play significant roles in the process 
of linearization. 

Assumption 1. The direction in which the component of the spin observ- 
able a is diagonal is assumed to be particular also for the matter field and the 
gravitation field, This correlation is suggested by the following: (1) there is no 
equation of motion for a which is derivable from the Dirac equation (Koga, 
1975a); (2) the direction in question is the direction of the magnetic force 
that is assumed to be embodied in an electron (Koga, 1975c, Section 4). 

Assumption 2. e/fi and m/t~ are both proportional to g34 of the metric 
tensor when the third direction is the one in which the component of the spin 
observable is assumed to be diagonal and the fourth direction is the time 
direction. See (3.1) and (4.7). The latter is compatible with (5.1 t).  

Assumption 3. Equation (3.4) is assumed simply for the purpose of making 
equation (2.7) equivalent to equation (A5). This assumption, together with 
Assumption 1, leads to relations (3.11) and (3.13) 

O = -uP,  l u l < l  

These are necessary also in Sections 4 and 5. 
We notice that Assumption 1 is very restrictive. For deriving the Maxwell- 

Lorentz equations, the effect of A~ in (2.19) is assumed simply to be negligible; 
also assumed is that the interaction between a pair of electrons does not contri- 
bute at all to the gravitation field. If those effects are assumed to be significant, 
the resultant equations will contain nonlinear terms, i.e., we shall get a nonlinear 
version of the Maxwell-Lorentz equations. 

Supposing that equations (2.1), (2.2), and (2.19) are given, is it possible to 
derive the Dirac equation and/or the Maxwell-Lorentz equations, with no 
knowledge of those resultant equations prior to the derivation? In order to 
make it possible to do so, the following two conditions are necessary: (1) The 
fundamental equations provide us a set of detailed information of the character- 
istics of the electron; (2) reduction of  the fundamental equations to the Dirac 
equation or the Maxwell-Lorentz equations is a completely logical process, once 
certain choices of characteristics of the electron to be embodied in those resul- 
tant equations have been made. We notice that these two conditions do not 
exist. In the first place, there is no directly operational means of comparing 
solutions of those fundamental equations with the fields constituting the 
electron; we cannot bring in any measuring devices within an electron. The 
fundamental equations by themselves do not provide any knowledge of an 
electron that may be compared directly with empirical informations. We have 
to make assumptions that define the correspondence between empirical in- 
formations and those that the fundamental equations may provide. Those 
assumptions must constitute one consistent set. We recognize that this process 
of interpretation of the fundamental equations is no more than the process 
of reducing them to equations, such as the Dirac equation and the IVlaxwell- 
Lorentz equations, of which empirical meanings are accessible. 

Finally, on considering together the set of fundamental equations (2.1), 
(2.2), and (2.19), the Dirac equations, SchriSdinger's time-dependent wave 
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equation, and Newton's equations of motion of a material point, we recognize 
that those four sets of  equations constitute a hierarchy of  laws governing the 
motion of the electron, in the sense that each is derivable from the one that 
precedes it in rank (Koga, 1975b). But the Maxwell-Lorentz equations govern 
a superposition of fields averaged over many electrons, and are to be placed 
outside the hierarchy, It is unknown, at this moment, if it is possible to place 
another set of equations between the fundamental equations and the Dirac 
equation. 

Appendix A: A Representation o f  the Dirac Equation 

We write for the Dirac equation for the electron 

i~ ~ ( c t )  + ~ - -  c t .  - i h  Or qt  _ ~ m c q t  = 0 (A1)  

where e < O, r = (x, y, z), and (A, i~) is the four-potential of an electromagnetic 
field exerted on the electron. By taking 

O x = Oy = , OZ = 
' 0 

we write for 'I~ 

~i  = Oi exp ( - imc2  t/~), 

O l = i e x  + e y  

0 2 = -iP~ + ~ 

o 3 = i(iOx + a y )  

04 = i(- iOz + ~) 

and substitute these in (A1), obtaining 

where 

(A2) 

(10 _?) 
i = 1 , 2 , 3 , 4  

(A4) 

curl Q - 3P/3(ct) - grad r; + fO) = 0 

div P + 3r;/O(ct) - (2mc/h)Q.  I + f(2) = 0 

curl  P + OQ/O(ct) - grad ~ - ( 2 m c / h ) ( Q  x I - h i )  + f(3)  = 0 

dJv Q - O~/O(ct) +f(4) = 0 

(AS) 

(A6) 

(A7) 

(AS) 

P =(e~,py,e~) 

Q = (Qx, Qy, Qz) 

i = ( o , o ,  1) 

(A9) 
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f(1) = e(tic)-I [(A x Q - ~?A + ¢P) x I - (A" Q + ¢~)I] (A10) 

f(2) = e(hc)-I (A x P - ~A - ¢Q)" I (A11) 

f(3) = e(~ic)-I [(A x P - ~h - q~Q) x I - ( h '  P - q~)I] ( i l  2) 

f(4) = e(/ic)-I (A x Q - z/A + 4)P)" I (A13) 

Append ix  B: Transfbrrnation Coefficients Satisfying (2. 21) 

1. The proof  of  the equivalency between (2.21) and (2.21')  is given as 
follows: 

o~ji ~ k j  /Ox '  i = (xji( ~ k J  /Ox m )(  oXm /OX' i) 

= oqi~i m O~kJ/Ox m 

= 61 m o~kJ/Ox m 

= O~ki/Ox i (BI)  

2. In order to be a group, a set of elements nmst be subject to the following 
four conditions of  combination: ( I )  The product of  two elements is an element; 
(2) a unit element exists; (3) the inverse element for an element exists; (4) the 
associative law is satisfied. It is rather easy to see that they satisfy conditions (2) 
(3), and (4). In the following, we shall show that condition (1) is satisfied by the 
transformations under consideration. 

We suppose that a denotes the coefficient of  transformation f rom system 
A to system B,/3 the coefficient of  transformation from system B to system C, 
and 7 the coefficient of  transformation from system A to system C. Their 
inverse coefficients are denoted by  6, ~, and "~, respectively. Accordingly, 

d x ' k  = Oq k d x  i 
(B2) 

d x " k  = ~i k dx  ' i  = ~rnkOq m dx  i = 7i k dx  i 

Hence, we have 

7i k = ~rnkOLi m ,  qi  k = ~mkf i i  m 

By differentiation, we have from (B3) 

~ ?  /Ox k = (~a?/~xk)~/ + ~jk ~ / /Ox  k 

According to (B2), we have the following reduction: 

= ~ik~k " ~ / / ~ x "  

= ~im/OX'm 

(B3) 

(B4) 

(BS) 
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Accordingly, (B4) yields 

o~ik /ox k = (~]k /~xk ) ~  + Oflim /Ox 'm 

If ~ and/~ satisfy condition (2.21), i.e., 

o~k i/ax i = 0,  ~im /Ox 'm = 0 

then we have, according to (B6), 

~ = 0  
Ox ~ 

In other words, "~ satisfies condition (2.21) also. 

(B6) 

Appendix C: A Theorem for Justification o f  Equation (2.19) 

The covariant divergence of a vector a i is given by 

(ai~ ~ai a i ~N/r~ 
div = ~x-- 7-~ ~ ~x i 

(M•ller, 1952, p. 283). 
We have from (2.1) 

div ~g/k 3rll3x ~) = div ((11v'Z---'---g)(Olaxk)(x/-~Fik)'~ 

(Cl) 

Considering (C1) and noticing that F ik is an antisymmetric tensor, we see that 
the right-hand side of the above equation vanishes. Hence 

div (gig a~l/Ox k } = 0 (C2) 

Similarly, 

div ~gik O~/Oxk } = 0 

On the other band, in the Euclidean space, we have the so-called Lorentz 
relation 

~A k/ax k = 0 (C3) 

or  

divA + aO/O(ct) = 0 

Comparing (C2) and (C3), we see that the two terms in the right-hand side of 
equation (2.19) are mutually analogous. 

Appendix D: Proof o f  Relation (4.5) 

We substitute (4.2) and (4.4) in (4.5), and eliminate Q from the resultant 
equations by means of (3.11). If we eliminate r~ among those resultant equations, 
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we obtain 

A42P = (A" P)A (D1) 

after ignoring those terms containing/~2. This relation is obviously satisfied, if 

A 11P (1)2) 

A 2 =A42  (D3) 

Relations (D2) and (D3) are shown to exist as follows: Suppose that A' and 
A '  4 are given; then, by a gauge transformation, we get 

A = A'  - grad X (D4) 

A 4 =A~ - )~/c (D5) 

We may satisfy relation (D2) by choosing grad X properly, and we may satisfy 
relation (D3) by choosing ~ properly. Conversely, relations (4.2), (4.4), (3.11) 
and (D1) lead to (4.5). 
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